Food web structure analysis using stable isotopes

Katrin Iken, Bodil Bluhm, Ken Dunton, Boris Sirenko, Sergey Gagaev

Food web structure describes

- how material is passed through the system
- how pelagic and benthic systems are linked (bottom-up)

Stable isotopes

- > can be used as water mass tracers
- > can be used as food web indicators:
 - food sources and trophic levels
- > food web marker with reduced "noise"

Hypothesis

Isotopic patterns and food webs are characteristic of the water mass in which the community occurs

Stable isotopes in food web context

- > Naturally occurring stable isotopes of carbon and nitrogen
- > 13 C and 15 N
- > Occur in small but quantifiable amounts
- Are incorporated in biological processes
- Stepwise enrichment with trophic levels:
 - ~1‰ for δ^{13} C, ~3.5% for δ^{15} N
- Integrate over time (~months)
- > Carbon isotopes indicate food source
- Nitrogen isotopes indicate trophic level

Stations sampled for food web analysis

Sample processing

~2500 samples collected ~1500 samples analyzed

δ ¹³C values for particulate organic matter (POM)

Carbon flux in benthic food web: δ^{13} C

Trophic levels in benthic food web: δ^{15} N

Trophic position of species by station

Food web length between POM and Chionoecetes opilio

Discontinuous food web in ACC conditions - possible explanations -

- > Analytical error of measuring POM source
- > Other carbon source than POM, e.g. ice algae, terrestrial material

> Intermediate consumers not considered, e.g. pelagic fauna

Emerging Hypotheses

Primary production in ACC system passes through pelagic food web before reaching seafloor, resulting in refractory material (enriched isotope ratios) for benthos => Loose coupling to benthos

Significant portion of primary production in ADW system settles out on seafloor before consumed by zooplankton; labile material (less enriched ratios) for benthos

=> Tight coupling to benthos

Chlorophyll a distribution (SeaWifs Staellite)

Comparison with other regions

Conclusions

- > Isotopic differences (δ^{13} C) in water masses (POM)
- > Gap between POM and first benthic consumer in ACC but not in AW conditions
- > Same species in benthic community feed on higher trophic level in ACC water than in AW water
- > Tighter coupling between POM and benthos in AW than in ACC
- > Zooplankton probably major role in organic matter transfer in ACC, while direct POM deposit in AW

Acknowledgements

- Funding: CIFAR/NOAA ARO, BASIS, SFOS
- Crew and scientists on the Khromov: carpenters, winch masters, catch & bottle donators, deck sorters, map makers
- Isotope processors: Melanie and Götz
- > Taxonomists: Ken Coyle, Igor Smirnov

Coupling to carbon source of species by stations

